Shrinkage estimators of intercept parameters of two simple regression models with suspected equal slopes

نویسنده

  • Shahjahan Khan
چکیده

Estimators of the intercept parameter of a simple linear regression model involves the slope estimator. In this paper, we consider the estimation of the intercept parameters of two linear regression models with normal errors, when it is apriori suspected that the two regression lines are parallel, but in doubt. We also introduce a coefficient of distrust as a measure of degree of lack of trust on the uncertain prior information regarding the equality of two slopes. Three different estimators of the intercept parameters are defined by using the sample data, the non-sample uncertain prior information, an appropriate test statistic, and the coefficient of distrust. The relative performances of the unrestricted, shrinkage restricted and shrinkage preliminary test estimators are investigated based on the analyses of the bias and risk functions under quadratic loss. If the prior information is precise and the coefficient of distrust is small the shrinkage preliminary test estimator over performs the other estimators. An example based on a medical study is used to illustrate the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications

Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...

متن کامل

ESTIMATION OF PARAMETERS OF THE SIMPLE MULTIVARIATE LINEAR MODEL WITH STUDENT-t ERRORS

This paper considers estimation of the intercept and slope vector parameters of the simple multivariate linear regression model with Student-t errors in the presence of uncertain prior information on the value of the unknown slope vector. The unrestricted, restricted, preliminary test, shrinkage, and positive-rule shrinkage estimators are defined together with the expressions for the bias, quad...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Shrinkage estimation of the slope parameters of two parallel regression lines under uncertain prior information

The estimation of the slope parameter of two linear regression models with normal errors are considered, when it is apriori suspected that the two lines are parallel. The uncertain prior information about the equality of slopes is presented by a null hypothesis and a coefficient of distrust on the null hypothesis is introduced. The unrestricted estimator (UE) based on the sample responses and s...

متن کامل

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007